Sediment and rock strength controls on river incision into bedrock

نویسندگان

  • Leonard S. Sklar
  • William E. Dietrich
چکیده

Recent theoretical investigations suggest that the rate of river incision into bedrock depends nonlinearly on sediment supply, challenging the common assumption that incision rate is simply proportional to stream power. Our measurements from laboratory abrasion mills support the hypothesis that sediment promotes erosion at low supply rates by providing tools for abrasion, but inhibits erosion at high supply rates by burying underlying bedrock beneath transient deposits. Maximum erosion rates occur at a critical level of coarse-grained sediment supply where the bedrock is only partially exposed. Fine-grained sediments provide poor abrasive tools for lowering bedrock river beds because they tend to travel in suspension. Experiments also reveal that rock resistance to fluvial erosion scales with the square of rock tensile strength. Our results suggest that spatial and temporal variations in the extent of bedrock exposure provide incising rivers with a previously unrecognized degree of freedom in adjusting to changes in rock uplift rate and climate. Furthermore, we conclude that the grain size distribution of sediment supplied by hillslopes to the channel network is a fundamental control on bedrock channel gradients and topographic relief.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mechanistic model for river incision into bedrock by saltating bed load

[1] Abrasion by bed load is a ubiquitous and sometimes dominant erosional mechanism for fluvial incision into bedrock. Here we develop a model for bedrock abrasion by saltating bed load wherein the wear rate depends linearly on the flux of impact kinetic energy normal to the bed and on the fraction of the bed that is not armored by transient deposits of alluvium. We assume that the extent of al...

متن کامل

Landscape disequilibrium on 1000–10,000 year scales Marsyandi River, Nepal, central Himalaya

In an actively deforming orogen, maintenance of a topographic steady state requires that hillslope erosion, river incision, and rock uplift rates are balanced over timescales of 10–10 years. Over shorter times, < 10 years, hillslope erosion and bedrock river incision rates fluctuate with changes in climate. On 10-year timescales, the Marsyandi River in the central Nepal Himalaya has oscillated ...

متن کامل

Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles

[1] Current models of long-term river incision into bedrock suggest that the local rate of differential rock uplift should exert a primary control on the gradient of channel longitudinal profiles. However, discrimination of this effect from the influence of variations in substrate erodibility, sediment flux, precipitation, and transient changes in profile shape has proved difficult in practice....

متن کامل

Predictions of steady state and transient landscape morphology using sediment-flux-dependent river incision models

[1] Recent experimental and theoretical studies support the notion that bed load in mountain rivers can both enhance incision rates through wear and inhibit incision rates by covering the bed. These effects may play an important role in landscape evolution and, in particular, the response of river channels to tectonic or climatic perturbation. We use the channel-hillslope integrated landscape d...

متن کامل

Constrain on Sediment flux Dependent River in incision

Transport of bedload sediment is one of the main processes that contribute to bedrock incision in a river and is therefore one of the key control parameters in the evolution of mountainous landscapes. In recent years, many studies have addressed this issue through experimental setups, direct measurements in the field, or various analytical models. In this article, we present a new direct numeri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001